Distinct immunologic changes in vivo following combination versus individual PD-1 or CTLA-4 checkpoint blockade in human cancer
نویسندگان
چکیده
Therapies targeting T cell immune checkpoints such as CTLA4 and PD1/PDL1 axis have shown considerable promise in the therapy of human cancer. Combination therapy with dual immune checkpoint blockade (ICB) was recently shown to be highly active in melanoma. While signaling via both PD1 and CTLA4 is known to converge downstream and dampen T cell function, data comparing in vivo effects of blockade of these immune checkpoints either alone or in combination in vivo in humans are limited. Here we have analyzed paired pre/ post therapy samples from patients treated either antiCTLA4 (n = 5) or anti-PD1 (n = 6) alone, or a combination of anti-CTLA4 and anti-PD1 (n = 8), using several methodologies including multi-parameter flow cytometry, single-cell mass-cytometry (CyTOF), Luminex and analysis of transcriptome of purified immune cells with exon-level arrays. We show that blockade of CTLA4, PD1 or combination blockade leads to distinct immunologic, genomic and cytokine signatures in vivo. CTLA4 blockade leads to a prominent proliferation signature in vivo, manifest as an increase in Ki-67 expression in a subset of T cells with transitional memory phenotype. PD1 blockade does not induce this phenotype and instead leads to marked changes in T cells expressing NK and cytolysis associated genes, as exemplified by Granzyme+ T cells. Combination blockade leads to nonoverlapping changes in gene expression including proliferation-associated and chemokine genes and leads to an increase in both Ki67+and Granzyme+ T cells. Overall, therapy-induced changes are more prominent in T cells than in monocytes include also involve non-overlapping changes in several alternatively spliced transcripts and non-coding RNAs. Each of the ICB therapies also leads to a distinct cytokine profile with differential effects on systemic levels of sIL2R and IL1a. Changes seen in the peripheral blood T cells can also be seen in the tumor infiltrating lymphocytes. Combination therapy leads to an increase in interferon-gamma producing T cells in both circulation as well as tumor bed. PD1 expression is higher on tumor infiltrating T cells when compared to T cells in circulation. Importantly, PD1 receptor occupancy following anti-PD1 therapy may be incomplete in the tumor infiltrating T cells even in the setting of complete receptor occupancy in circulating T cells. These data demonstrate that blockade of PD1, CTLA4 alone or in combination have distinct immunologic effects in vivo and each strategy serves as a unique immune-therapeutic. Improved understanding of the in vivo effects of ICB is needed for rational development of future immunebased combinations against cancer.
منابع مشابه
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Combination therapy concurrently targeting PD-1 and CTLA-4 immune checkpoints leads to remarkable antitumor effects. Although both PD-1 and CTLA-4 dampen the T cell activation, the in vivo effects of these drugs in humans remain to be clearly defined. To better understand biologic effects of therapy, we analyzed blood/tumor tissue from 45 patients undergoing single or combination immune checkpo...
متن کاملImmune Checkpoint Blockade in Cancer Therapy.
Immunologic checkpoint blockade with antibodies that target cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death protein 1 pathway (PD-1/PD-L1) have demonstrated promise in a variety of malignancies. Ipilimumab (CTLA-4) and pembrolizumab (PD-1) are approved by the US Food and Drug Administration for the treatment of advanced melanoma, and additional regulatory appr...
متن کاملInterleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models
Recent advances in cancer treatment with checkpoint blockade of receptors such as CTLA-4 and PD-1 have demonstrated that combinations of agents with complementary immunomodulatory effects have the potential to enhance antitumor activity as compared to single agents. We investigated the efficacy of immune-modulatory interleukin-21 (IL-21) combined with checkpoint blockade in several syngeneic mo...
متن کاملStructural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy
Cancer cells express tumour-specific antigens derived via genetic and epigenetic alterations, which may be targeted by T-cell-mediated immune responses. However, cancer cells can avoid immune surveillance by suppressing immunity through activation of specific inhibitory signalling pathways, referred to as immune checkpoints. In recent years, the blockade of checkpoint molecules such as PD-1, PD...
متن کاملGlioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model.
Inhibition of immune checkpoints, including cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and its ligand PD-L1, has demonstrated exciting and durable remissions across a spectrum of malignancies. Combinatorial regimens blocking complementary immune checkpoints further enhance the therapeutic benefit. The activity of these agents for patients with glioblastoma, a generall...
متن کامل